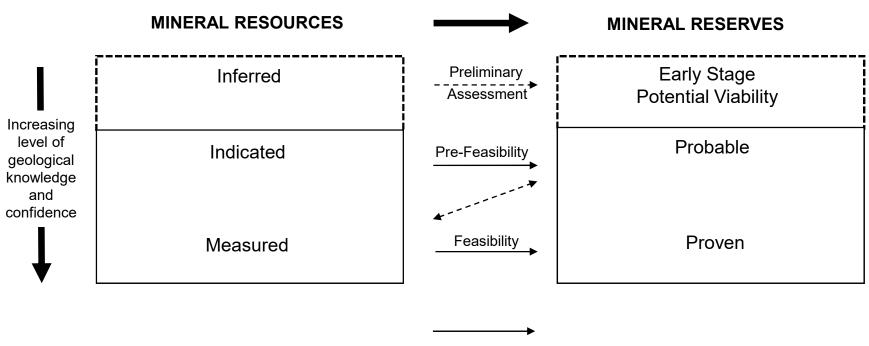
Exploration Framework for Lithium in Brine

Presentation by Mark King, PhD, PGeo, FGC

Outline

- Regulatory framework that guides brine exploration
- Exploration Phases
- General brine removal trends
- Timing


Mark King – My Background in Playas and Salars

- Worked on more than 16 salars in Chile, Argentina and Nevada.
- From 2009 to 2012, QP for three rounds of NI 43-101 Reports for Lithium Americas, culminating in a lithium brine Reserve Estimate.
 - 1st publicly released brine Reserve Estimate
- Due Diligence Studies of five different salars in Argentina and Chile
- Directed SEAWAT modeling efforts related to the Albemarle permit application at Salar Atacama.
- QP for work conducted by Talison Lithium, at the Salares Seven Lithium Brine Project in Chile.
- QP for three rounds of Technical Reports for the 3Q Project in Argentina (including Reserve Estimate)
- Directed Resource estimates and numerical models for Albemarle Silver Peak
- One of few QPs with extensive experience on both production and exploration sites

Relationship Between Resources and Reserves (Originally defined for Hard Rock deposits)

- Figure is consistent with NI 43-101 (Canadian), JORC Code (Australian)
- SEC IG7 Guidance (US) is conceptually similar, but with minimal detail

Consideration of mining, metallurgical, economic, marketing, legal, environmental, social and governmental factors (the "Modifying Factors")

Application to Brine Deposits

Some modification, enhancement, or addition to hard rock study methods

MINERAL RESOURCE EVALUATION MINERAL RESERVE EVALUATION Demonstrate bulk quantity of drainable Demonstrate recoverability of dissolved dissolved mineralization; key components mineralization; key components (in addition to are 3D characterization of: Resource) include: 1) drainable porosity, and 1) the continuity and distribution of reservoir 2) brine grade permeability, and 2) reservoir boundary conditions (hydraulic and geochemical) Preliminary Early Stage Inferred **Potential Viability** Assessment ' Increasing level of Probable Indicated **Pre-Feasibility** geological knowledge and confidence Proven Feasibility Measured

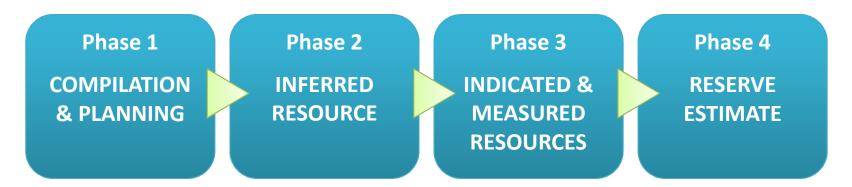
Otherwise, Modifying Factors concepts are identical to hard rock

Resource and Reserve Estimates

Resource:

- how much is in the ground
- For brine, it is the drainable amount in the pore spaces
- Published Resources cover a wide range of complexity

Reserve:


- how much of that can be economically extracted (pumped)
- Requires predictive modeling with boundary conditions and water balance, to represent freshwater capture and well drawdown
- By definition, there is no Reserve (no Project) without the right to extract brine
- Qualified Professional (QP) concept is central in identifying project "risks"

Commonly assumed Rule of thumb: Reserves are 25-33% of Resources (largely unconfirmed, because there are so few Reserve Estimates..... and even fewer producing sites)

Phases of Work For Evaluating Resources and Reserves on Brine Sites

- Guidance documents do not provide specific exploration methods or approaches
- The following framework has become relatively standard
- Directed (or sometimes just audited) by a Qualified Person (QP)
- Primary field activities summarized below

Phase 1: Compilation and Planning

Phase 1
COMPILATION
& PLANNING

Phase 2
INFERRED
RESOURCE

INDICATED &
MEASURED
RESOURCES

Phase 3

Phase 4

RESERVE ESTIMATE

Key components:

- · Acquisition and analysis of existing data
- Site visit(s)
- Field program planning
- Development of QA/QC procedures and databases
- Preliminary (recon) near-surface sampling

EXPLORATION TARGET(S)

Phase 1

- Data acquisition from various entities
 - Concession boundaries, geological mapping, road network, climate statistics, digital elevation model, historic data, etc.
- Site visit
- Desktop studies
 - Compile data
 - Basin wide and spatial analyses
 - Develop geological and hydrogeological understanding and summaries of project areas
 - Determine best practice applicable exploration methodologies
- Field program planning
 - Permit requirements
 - Sample requirements for Inferred Mineral Resource Estimate
 - Design databases and QA/QC procedures for new technical data
- Preliminary (recon) near-surface brine sampling

Phase 2: Inferred Mineral Resource Estimate

Phase 1
COMPILATION & PLANNING

Phase 2
INFERRED RESOURCE

Phase 3
INDICATED & RESERVE ESTIMATE

RESOURCES

Key components:

- Geophysical surveys
- Drilling boreholes (for core and brine samples)
- Borehole decom or conversion to MWs
- Implementing QA/QC procedures and databases

INFERRED MINERAL RESOURCE ESTIMATE

Phase 2: Inferred Mineral Resource Estimate

- Geophysical surveys:
 - Used to refine locations for follow-up drill sites
 - Contribute to understanding of basin architecture and composition
- Drill boreholes:
 - Continuous core of material to determine stratigraphy, permeability
 - Discrete level brine samples from specific depths
- Boreholes are either decommissioned or converted to monitoring wells (and then developed by removing fluid and seds)
- Compilation of databases and implementation of QA/QC procedures
- Results of field program analyzed and integrated with other data sets
- Preliminary characterization of hydrostratigraphic model
- Quantification of Inferred Mineral Resource Estimate, if supported by data

Phase 3: Indicated & Measured Resources

Phase 1

COMPILATION & PLANNING

Phase 2

INFERRED RESOURCE

Phase 3

INDICATED & MEASURED RESOURCES

Phase 4

RESERVE ESTIMATE

INDICATED &
MEASURED MINERAL
RESOURCE ESTIMATE

- Detailed sampling and drilling
- May drill pumping wells (for Phase 4)
- May initiate processing pilot tests (for Phase 4)
- Integrate data from monitoring wells
- Refinement of hydrostratigraphic model
- Possible preliminary flow model (for Phase 4)
- Continued QA/QC and database monitoring

Phase 3: Indicated & Measured Resources

- More detailed field program to increase confidence and geological understanding of deposits
 - More borehole drilling and monitoring wells
- May drill pumping wells for hydraulic characterization of aquifers (for Phase 4)
- May initiate processing pilot tests (for Phase 4)
- Continued monitoring of QA/QC procedures and databases
- Assess and integrate results of detailed program with existing data
- Refine hydrostratigraphic model
 - May include development of preliminary dynamic flow model (for Phase 4)
- Upgrade Inferred Resource to Indicated and/or Measured Mineral Resource Estimates, if supported by data
- Determine additional information requirements for upgrading Resources to Mineral Reserves
 - E.g. additional permitting, pre-feasibility study, preliminary economic assessment, etc.

Phase 4: Reserve Estimate

Phase 1

COMPILATION & PLANNING

Phase 2

INFERRED RESOURCE

Phase 3

INDICATED & MEASURED RESOURCES

Phase 4

RESERVE ESTIMATE

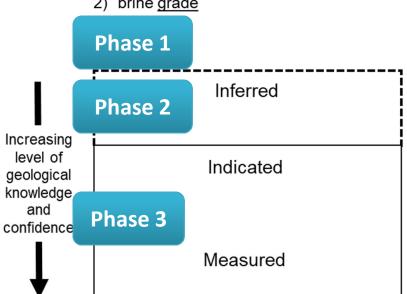
RESERVE ESTIMATE

- Detailed sampling
- Pumping tests
- Pilot tests for brine processing
- Pre-Feasibility/Feasibility and/or Preliminary
 Economic Assessment studies
- Environmental Management Plan
- Develop full Numerical Flow Model
- Continued QA/QC and database management

Phase 4: Reserve Estimate

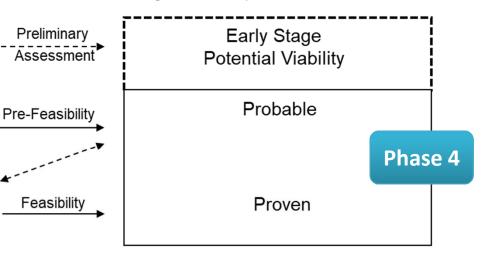
- Additional drilling (for core and brine sampling) to increase geological understanding and confidence of deposit
- Pumping tests for hydraulic characterization
- Conduct pilot tests for brine processing response
- Assess results and integrate with existing data
- Pre-Feasibility/Feasibility and/or Preliminary Economic Assessment studies
- Develop Environmental Management Plan
- Development full numerical flow model
- Use model to upgrade Indicated and Measured Resources to Probable and Proven Mineral Reserves

How these Exploration Phases Relate to the Framework


MINERAL RESOURCE EVALUATION

MINERAL RESERVE EVALUATION

Demonstrate bulk quantity of **drainable** dissolved mineralization; key components are 3D characterization of:


1) drainable porosity, and

2) brine grade

Demonstrate recoverability of dissolved mineralization; key components (in addition to Resource) include:

- 1) the continuity and distribution of reservoir permeability, and
- 2) reservoir boundary conditions (hydraulic and geochemical)

Otherwise, Modifying Factors concepts are identical to hard rock

Preliminary

Feasibility

Production

Brine Removal Trends in Each Phase

Exploration Phase	Brine Removal Activity (Relative Amount)
1	Surface brine grab sampling • Nominal (<< 1 acre foot)
2	Borehole brine sampling and well development • Minimal (<1 acre foot)
3	 Borehole brine sampling and well development Minimal (<1 acre foot) Well pump tests (if considered useful by QP) +/- 5 acre feet; QP judgment
4	 Well pump tests (required) +/- 5 acre feet; QP judgment Pilot processing Possibly using pump test effluent; QP judgment

Timing Considerations

- Feasible to progress through the 4 Phases in 3-4 consecutive field campaigns; interpretive work and planning conducted in the intervening periods.
- 4-6 months per field campaign; at least 3-4 years for Reserve Estimation
- Progression from one Phase to the next requires field evidence of potential lithium resources + QP sign-off
- In general, brine removal increases as the Phases advance

The Road to Eventual Production

- The Phases of exploration are set up to protect investors: to ensure that reported results are "real" and that significant risks have been considered
- If Exploration is successful, it leads to Production
- During Production, there is an ongoing requirement to understand the deposit, so that it can be effectively mined
 - Combination of production data and boreholes for brine and core samples

Summary

- There is a Regulatory Framework for defining mineral assets:
 - Resources (Inferred, Indicated and Measured) and Reserves (Probable and Proven)
- The Framework is driven by the need for public reporting
 - NI 43-101, JORC Code, SEC IG7
 - Initially developed for hard rock deposits
 - Applicable to brines, with some technical modifications
- For publicly traded juniors, the QP role is critical, especially for identifying significant risks
- The requirement for brine usage increases as exploration proceeds:
 - Borehole sampling is required for Resources relatively minimal usage
 - Pumping tests and pilot processing required for Reserves QP will ultimately determine adequacy

Appendix

Exploration Drilling and Brine Sampling Methods

Method 1.

- Diamond Drilling:
 - Produces continuous column of drill core
 - Various core sizes and rig capacities (>3000 feet)
 - Core and brine samples collected
 - Important for geological modelling
 - Currently in use at SP
 - Relatively high cost
- Brine Sampling methods:
 - Packer system
 - isolates specific horizons identified in core
 - Contamination possible from drilling fluids
 - Selected horizon purged clean before sampling

Exploration Drilling Methods

Method 2:

- Sonic Drilling:
 - Produces continuous column of drill core
 - Sonic vibration penetration, no drill fluids
 - Limited core sizes; max depth capacity ~600 feet
 - Core and brine samples collected high quality
 - Important for geological modelling
 - Fast drilling; higher \$cost/foot
- Brine sampling methods:
 - Bailer and Packer systems
 - From specific horizons identified in core
 - No drilling fluid contamination

Exploration Drilling Methods

Method 3:

- Reverse Circulation (RC):
 - Produces slurry/chips
 - Percussion method, air driven
 - Flexible range of bit sizes and depth capacities
 - Chip samples less definitive
 - Packer system samples collected;
 - Mainly for down-hole and horizon-testing surveys
 - Lower \$cost/foot

Method 4:

- Air Lift (AR):
 - Air percussion method
 - Large diameter open holes possible
 - Cased and used for pump testing
 - Relatively cheap
 - Generally not sampled

